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Optimal size of a complex network
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We investigate the response behavior of an Ising system, driven by an oscillating field, on a small-world
network, with particular attention to the effects of the system size. The responses of the magnetization to the
driving field are probed by means of Monte Carlo dynamic simulations with the varied rewiring probability. It
is found that at low and high temperatures the occupancy ratio, measuring how many spins follow the driving
field, behaves monotonically with the system size. At intermediate temperatures, on the other hand, the occu-
pancy ratio first grows and then reduces as the size is increased, displaying a resonancelike peak at a finite
value of the system size. In all cases, further increase of the size eventually leads to saturation to finite values;
the size at which saturation emerges is observed to depend on the temperature, similarly to the correlation
length of the system.
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It has been known that under appropriate circumstan
the presence of noise in a driven system can enhance r
than suppress the output of the system. Such attractive
nomena, called stochastic resonance~SR!, have been widely
investigated in various systems of many practical appli
tions @1,2#. Recently, those SR phenomena have also b
examined in the context of the system-size resonance:
chastic flips of the mean field are observed to depend on
system size, leading the linear response of the system
reach a maximum at a certain system size@3#. Those works
considered two systems of fully coupled noisy oscillato
and one two-dimensional Ising system with nearest neigh
interactions. Namely, the underlying connection topology
dynamic variables was assumed to be regular, with ei
local or global connections. Meanwhile, recent studies
neuronal networks, computer networks, biochemical n
works, and even social networks, have revealed that var
real systems in nature possess quite complex structu
which can be described neither by regular networks nor
completely random networks@4#. Accordingly, it is desirable
to study effects of the system size on collective response
the systems with the connection topology of complex n
works, which can be made more realistic. In particular,
interplay between the system size and noise may be rele
in various biological systems such as neural networks
other cell networks, which consist of finite numbers of e
ments. For example, in the study of stochastic resonanc
biological systems, optimal sizes of calcium ion chan
clusters have been examined. It is observed that the clu
ing of the release channels in small clusters increases

*Electronic address: hhong@kias.re.kr
†Also at School of Physics, Korea Institute for Advanced Stu

Seoul 130-722, Korea.
1063-651X/2003/67~4!/046101~5!/$20.00 67 0461
s,
her
e-

-
n

to-
he
to

s
or
f
er
f
t-
us
es,
y

in
t-
e
nt
d

-
in
l
er-
he

sensitivity of the calcium response@5#. This suggests a pos
sible realization of the system, providing motivation for th
investigation of the size resonance in the complex netw
structure.

In this paper, we consider an Ising model on a comp
network, specifically, on the Watts and Strogatz~WS!-type
small-world network@6#. It is well known that the WS net-
work is characterized by a small characteristic path len
,; ln N, where N is the number of nodes constituting th
network, and a large clustering coefficient. Both are co
monly observed properties of real networks in nature. T
WS network in this paper is constructed following Ref.@6#:
A regular one-dimensional~1D! network ofN nodes is first
constructed with local connections of rangek, under periodic
boundary conditions. At this stage each node on the netw
has 2k nearest neighbors. Next, each local link is visit
once and, with the rewiring probabilityP, removed and re-
connected to a randomly chosen node. After a whole sw
of the entire network, the average number of shortcuts in
network of sizeN is given byNPk. Accordingly, the rewir-
ing probability P may be regarded as the fraction of th
average number of shortcuts over the total number of c
nectionsNk. In this paper, the local interaction rangek is set
equal to two for convenience; longer ranges (k.2) are not
expected to lead to any qualitative difference. After the W
network is built as above, an Ising spin is put on every no
and an edge~or a link! connecting two nodes is regarded
the coupling between the two spins at the two nodes. Fina
we apply an oscillatory field, driving the Ising spins, and t
corresponding responses of the average spin, i.e., the ma
tization are probed via Monte Carlo dynamic simulation
with attention to the effects of the system size.

The Hamiltonian for the field-driven Ising model on th
WS network, which is constructed as described above, re

,
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H52
1

2 (
i , j

Ji j s is j2h~ t !(
i

s i , ~1!

where the ferromagnetic spin-spin interaction strengthJi j is
given by

Ji j 5Jji [H J for j PL i

0 otherwise.
~2!

The neighborhoodL i of node i stands for the set of node
connected toi ~via either local edges or shortcuts!, and
s i(561) represents the Ising spin at nodei. The sinusoi-
dally oscillating magnetic fieldh(t)5h0cosVt is applied
with the driving amplitudeh0 and frequencyV, while the
system is assumed to be in contact with an isothermal
bath at temperatureT. We probe the dynamics of the syste
described by Eq.~1! by means of Monte Carlo~MC! dy-
namic simulations, employing the heat bath single spin-
algorithm @7# and measuring the timet in units of the MC
time step. For thermalization, we start from sufficiently hi
temperatures and lower the temperatureT slowly with the
decrementDT50.01 ~in units of J/kB with the Boltzmann
constantkB). The driving amplitude and frequency are tak
to be h050.1 andV50.001. We have also considered d
ferent frequencies, for example,V50.01 and 0.1, and found
that the resonancelike peak indicating the system-size r
nance behavior tends to diminish at higher frequencies~see
below!. While simulations are performed at a given tempe
ture, the data from the first 105 MC steps are discarded
which turns out to be sufficient for stationarity, and measu
ments are made for next 105 MC steps. Networks of various
sizes are constructed as described above, and average
taken over 100 different network realizations for each siz

To investigate the collective response of the system,
measure the occupancy ratioR which is defined to be the
average fraction of the spins in the direction of the exter
field @8,9#:

R[ K number of spins in the direction ofh~ t !

total number of spins L , ~3!

where ^•••& denotes the time average. In other words,R
measures how many spins follow the oscillating magne
field. It is easy to understand thatR approaches the value 1/
in both low- and high-temperature limits~see, e.g., Ref.
@9,10#! and becomes increased near the stochastic reson
temperature, reflecting that more spins follow the exter
driving. Such SR phenomena have been observed in the
tem of given size, and it has been demonstrated that
matching condition of two time scales, the relaxation time
the system and the inverse frequency of the driving fie
yields the optimal noise strengthTSR at which the system
displays maximum responses@9,10#. Here, we consider the
system studied in Ref.@10# from a different point of view
and examine the behavior of the occupancy ratio with
system size at various temperatures, probing the size r
nance.

In the absence of long-range shortcuts (P50), the net-
work structure reduces to that of the 1D regular network w
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only local couplings of rangek. Accordingly, whenP50,
the field-driven Ising model described by Eq.~1! as well as
the undriven model@h(t)50# does not exhibit long-range
order at finite temperatures, yieldingTc50. Note, however,
that even such a 1D system displays SR behavior at fi
temperatures@11#. In the presence of long-range shortcu
(PÞ0), on the other hand, it has been found that both driv
and undriven Ising model display ferromagnetic order at
nite temperatures@10,12#; furthermore, double SR peaks
which originate from matching of two time scales have be
observed.

We first consider the case without long-range shortc
(P50), i.e., the purely 1D system, and shown in Fig. 1 t
behavior of the occupancy ratioR versus the system sizeN at
various temperatures. It is observed that the occupancy r
R first increases and eventually saturates to a finite valu
the system sizeN is increased. The saturation sizeNs , be-
yond which the occupancy ratioR does not increase an
more, reduces as the temperatureT is raised. Figure 2 dis-
plays such temperature dependence of the saturation sizeNs ,
which has been taken as the size giving the occupancy r
with the difference from the stationary value less th
531024. One can observe the exponential behavior:Ns
}ec/T with c55.660.7, which is reminiscent of the behav
ior of the correlation length. In the 1D Ising model the co

FIG. 1. Behavior of the occupancy ratioR with the system size
N at various temperaturesT in the absence of long-range shortcu
Lines are merely guides to eyes.

FIG. 2. Behavior of the saturation sizeNs with the temperature
T in the absence of shortcuts, exhibiting a linear relation betw
ln Ns and 1/T, with the slopec55.660.7. The dotted line, obtained
by the least-square fit, represents lnNs55.6/T11.2.
1-2
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relation lengthj diverges in the low-temperature limit asj
;ek(k11)/T @12#. Here, the local interaction rangek has been
chosen to be two (k52), leading to the behaviorj;e6/T,
essentially the same as that of the saturation size. It is
concluded that the saturation behavior emerges when the
tem size reaches the correlation length of the system.

Meanwhile, in the presence of long-range shortcutsP
Þ0), substantially different behavior has been obtained
the occupancy ratio. In Fig. 3, the occupancy ratioR of the
system with the rewiring probabilityP50.5 is displayed as
the system sizeN is varied. At low temperatures (T&1.5), R
first decreases monotonically with the sizeN and then satu-
rates to the value 0.5; at high temperatures (T*2.9), on the
contrary,R increases monotonically to the saturation va
larger than 0.5, depending on the temperature. In contra
these monotonic behaviors, at intermediate temperat
(1.5&T&2.9), the occupancy ratioR behaves nonmonotoni
cally, exhibiting a maximum at a finite value of the syste
size N. The height of such a resonancelike peak tends
increase as the temperature is raised. We have also co
ered different values of the rewiring probabilityP as well as
of the driving frequencyV. It is found that asP is increased,
the range of the temperature, in which the size-resona
behavior is displayed, becomes wider and that the satura
temperature beyond whichR shows saturation behavior in
creases. On the other hand, as the driving frequency is
creased, the position of the resonance peak shifts tow
smaller values of the system size, thus tending to yi
monotonic decrease ofR.

Note that this resonance behavior manifests two kinds
length scale in the system with long-range shortcuts:
saturation sizeNs and the resonance sizeNm at which R
reaches the maximum. To understand the possible rela
with the correlation length even in the presence of lon
range shortcuts, we examine the behaviors ofNs and Nm ,
which are displayed in Figs. 4–6.

Figure 4 exhibits the saturation sizeNs versus the tem-
peratureT in the system withP50.5. For comparison with
the correlation volume described byjV;uT2Tcu2 n̄ @13#, the
data points are plotted in the logarithmic scale, thus fitted
a linear relation between lnNs and lnuT2Tcu with the propor-
tionality constant~slope! n̄. From this fitting, we obtainTc

FIG. 3. The occupancy ratioR vs the system sizeN in the
presence of the long-range shortcuts (P50.5) at various tempera
ture T. Lines are merely guides to eyes.
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'2.7, with which the slope is estimated to ben̄52.060.1.
Noting that ind dimensions, the correlation volume relat
with the correlation lengthj via jV;jd and the behaviorj
;uT2Tcu2n, we thus haven̄5dn in a d-dimensional sys-
tem. Here, it is known that the~effective! dimensiond of a
mean-field system should be taken as the upper-critical
mensiondu @14#, leading to n̄5dun. With du54 and n
5nMF51/2 for a mean-field system, we conclude that t
value n̄52.0 indicates a transition of the mean-field natu
@13#. We also examine the other length scaleNm and show its
temperature dependence in Fig. 5, where for convenie
Ns , shown already in Fig. 4, is also plotted. It is shown th
both the two length scales behave similarly with the tempe
ture, yielding essentially the same value of the exponenn̄

FIG. 4. Behavior of the saturation sizeNs with the temperature
T for P50.5 at low temperatures (T,Tc), where the valueTc

52.7 obtained from the fitting has been used. The least-squar
represented by the dashed line corresponds to lnNs522.0 ln(Tc

2T)11.6, the slope of which givesn̄52.0. Inset: Behavior ofNs at
temperatures higher thanTc . The dashed line, obtained from th
least-square fit, is given by lnNs522.0 ln(T2Tc)12.1, where the

slope again leads ton̄52.0. The error bars have sizes not larg
than the symbol size.

FIG. 5. The resonance sizeNm together with the saturation siz
Ns vs the temperatureT in the presence of shortcuts (P50.5).
The values ofTc , obtained from the fitting, are given by 3.1 an
2.7 for Nm and Ns , respectively. The dotted line represents t
corresponding least-square fit ofNm , which is described by
ln Nm522.0 ln(Tc2T)11.2. Thus, bothNm and Ns result in the

same valuen̄52.0.
1-3
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52.060.1 ~see the slopes of the two fitted lines!. Accord-
ingly, both the two length scalesNs andNm apparently mea-
sure the correlation length of the system. On the other ha
the fitting parameterTc for Nm turns out to be 3.1, which is
somewhat higher than the value 2.7 obtained from fitting
Ns . At this stage it is difficult to discern unambiguously th
difference; more extensive simulations and careful anal
are necessary for confirming the origin as well as the p
ence of this discrepancy.

Finally, we consider systems with different rewiring pro
abilities, and examine how the rewiring probabilityP affects
the resonance behavior. Figure 6 shows the behavior of
resonance sizeNm with the temperature at various values
P. It is observed thatNm first increases slowly with the tem
peratureT then very fast asT approachesTc , which again
reminds us of the behavior of the correlation length. Beh
ior of Nm with the rewiring probabilityP at given tempera-
tureT52.2 is displayed in the inset of Fig. 6. Note the rath
fast decrease ofNm for small rewiring probabilities (P
&0.5) and the saturation behavior for large rewiring pro
abilities (P*0.5). Such saturation behavior has also be
reported in the synchronization of the system of coupled
cillators on a WS network@15#. It is also noteworthy thatNm
decreases as shortcuts are introduced to the system
shortcuts tend to decrease the optimal system size which
responds to the maximum collective response at given t
perature and rewiring probability.

FIG. 6. The resonance sizeNm vs the temperatureT at various
values of the rewiring probabilityP. Inset: Behavior ofNm with the
rewiring probabilityP at temperatureT52.2.
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In conclusion, we have investigated the effects of the s
tem size on the collective response, measured by the o
pancy ratio, in the oscillatory field-driven Ising model on W
networks. In the purely one-dimensional system witho
long-range interactions, which does not undergo a ph
transition at any finite temperature, the occupancy ratio
been found to display monotonic behavior, not exhibiting
resonance peak. As long-range interactions come into
system, on the other hand, system-size resonance, chara
ized by nonmonotonic behavior, has been observed
emerge, thus suggesting a possible relation between the
resonance and a finite-temperature phase transition.
resonance size at which the occupancy ratio reaches the
may be regarded as the optimal size of the network, in v
of the maximum response. It is noteworthy that the optim
size as well as the saturation size displays temperat
dependent behavior, which is essentially the same as tha
the correlation length of the system. This suggests the in
esting possibility of estimating the correlation length fro
the stochastic resonance behavior at various sizes. Nam
the size resonance phenomena may be used as a tool to
sure the correlation length. Note also that at given tempe
ture both length scales, the optimal size and the satura
size, tend to decrease as the amount of long-range inte
tions is increased.

As a possible application of the system-size resonan
we suggest biological systems such as the assembly ob
cells which reside in the islets of Langerhans in pancr
@16#. It is known that theb cells form clusters, each with a
finite number of cells, rather than gathering together as
unit. Thus, speculated is the possibility that the function
the b cells may be optimized via the mechanism of t
system-size resonance. In addition, the system-size r
nance behavior may also be useful for understanding the
mation of the public opinion@17#.
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